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* The origins

e Sand production
* Shale hole stability
* Chalk liguefaction

* Shale creep
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The origins of hollow cylinder testing

* Formation Physics laboratory established in 1983

 Established to help with borehole stability and solids
production problems

* Through laboratory experiment based predictive model building

* Early tests looked at cavity

Downhole

e Later simplified to hollow cylinder
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Hollow cylinder test system
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* SBEL large sample cell (108 MPa)
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* Sand detection system can be added

* Internal and external deformation measurement
devices

* High-capacity fluid flow system (4 |/min at 40 MPa)
* Radial and/or axial flooding of samples
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HC deformation: steps to failure

First step: elastic deformation

e Limited deformation regime

* At some point, microcracks develop (end of linear elastic deformation)

Growth of a plastic zone from the borehole outwards

* Relieves stresses at borehole face

» Screens far-field anisotropic stresses

Buckling at the borehole surface

e Bifurcation from isotropic radial deformation to buckling

* |nitiates cracking around the borehole

Development of shear bands and tensile cracks

* Rock rupture occurs as development of shear bands and exfoliation

 Surface parallel cracking and shear banding are dominant failure
modes
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Standard sand production test on HC plug

Fluid
outflow

m From field core
m Outcrop

Fluid
inflow

Sand trap

Sand trap
container

Inflow
breaker

Fluid inlet

Sand trap Sand

collection
plate
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HC test procedure and typical output

* Confining stress increased in steps
* For each step, fluid flow rate increased in steps
* If no sand, flow rate increased

* If sand, wait until no more sand produced
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1D erosion model

* Coupled poro-elastoplastic rock description and erosion model:

Equilibrium: j%%dV = I f,-ﬁ,-dS
V o
. k ¢
Darcy & Kozeny-Carman: g, =——p, ; k=k >
H (1-9¢)

Combined solids continuity @¢

& mass production: p (1 ¢)\/ q.9; =
!

Sand production coef. 1 0 i7" <Y pear
function of plastic shear 27 = P_yP Yify? <P <y 4]
}/ < ed 1 eaK — - eda —I_
strain ( ) 11(7/ Vb k) Ve V" SV pear + Al 4
\/12 ify}feak+/12//11§71”
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1D Analytical sand model version

Simplifying assumption: the rock framework is unaffected by erosion until the porosity has
reached a critical value ¢. - then it collapses.

* Repeated cycles of erosion & collapse.

Porosity within sand producing zone:

p=i=(1=g)e 0N

Average sand production rate = sand volume within sand producing zone divided by time
between each collapse:

D-D : 1-¢
C(0-sq)  witnn =41 s —oni
0 c 0

M, = uRP,

At constant drawdown above the critical limit, the average sand production rate may increase
slowly with time.

Eventually, or alternatively, the sand production may stop after a while.
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2D Friction dominated flow model

* Link between rock failure and sand transport

* Analytical model based on friction-collision transition

e Assumes initial required state: plastic zone with shear bands
* Sand flow arises in shear bands

* Fully mobilised friction between grains needed

* Flow occurs in post-peak rock environment

* (residual strength, cohesion, friction angle, ...) 0 @ SINTEF



Bounds on sand production estimate

W Cylindrical tunnel W Rectangular slit

* Lower bound: m restricted to m spanning whole
centre of plug plug height

* only single shear bands active

* Higher bound:

* complete collapse of plastic zone
* due to wholescale fluidisation

* due to interaction between all SB, enclosing breakouts

* Probable actual state:

* anywhere between LB and HB, depending on rock
type and failure
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Coupling particle flow to porosity change

e Rate of production coupled to changing porosity:

(psVOZslit (1 o ¢t ) o dMs t)

. = — :1_
MS Qplos (1 ¢) ¢t+1 pSVOZSh-t
* Permeability calculation:
R — R
aZ ¢3 k _ o ;
kg = — ‘" R-R R —R
SB 180 (1_¢)2 C l_l_ 0 [4
! kg, k
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Sand grains or flakes?

* High porosity, low strength sandstones tend to produce individual sand
grains

* Asieve analysis of the crushed sample gives a good estimation of what to expect

* Lower porosity, higher strength sandstones tend to produce flakes,
especially if there is a substantial amount of clay cementation

e But on arrival of water breakthrough, there may be a transition to individual grain production

SINTEF




Sand grains

01:01:36:13 ¢
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Flakes
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Effect of 2-phase saturation

* Comparison of 1-phase and 2-phase saturation

* Water breakthrough effect on sand rate
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SandPredictor

SandPredictor 4 e  SandField Initiation & Volume Prediction Tool © S_ INTEF

Version 4.3.6/Jul 2016/EPa/PC
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SandPredictor
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SandPredictor

Sand Field Initiation & Volume Prediction Tool
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Borehole stability in shales

* Straining of borehole wall of shale:
* Osmosis
* lon exchange

e Thermal effects

Axial strain [%o]
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Formation anisotropy

e By default, cores are taken axially along the well path

e Some formations are markedly anisotropic
* Both in permeability and strength
* One then needs to take out plugs in the relevant direction
* This is often impossible if the core diameter is small

* [f possible, repeat testing should be performed at different plug axis angle to formation bedding, to cater for other well
orientations

* Bedding angle may affect borehole failure mode (shear, tensile) and caving/breakout size and shape (more relevant for cap
rock then most sandstones)
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Dynamic borehole stability

* Simulation of swab and surge effects

* Rotation of drillstring with stabilizer Pressure |
vessel Vertical
. . position
e Scaling down from field to laboratory: motor
/
Cantilever
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Additional fracturing of borehole wall

 Effect of drillstring RPM on shale fracturing studied

* Increased RPM leads to longer radial extension of fractures
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File  Project Help

Preventing Shale Instabilities
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Chalk liqguefaction: triaxial tests
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Chalk liguefaction: HC tests

* Drawdown & depletion
HC tests with oil & brine

saturation
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Chalk liquefaction vs. breakouts

DOOD
VDO

SINTEF

Liquefaction failure in brine DD test



Chalk model (E. Papamichos) ea

IO Data . s
- - Fit 14 o
- - FitMC ] i
Str path UC 12 ’7""-\
_ ——StrpathTC2 | 4 /’,’ AN
* Tensile criterion for DD-induced liquefaction : 2 s / :
1 M 2si 'f"///
P o . +ap. I S1I1 A ‘
p,—p,<UCS—Inle 2B gl pp o =29 :
a r l-r / P S l-smg . o ” + o
p [MPa]
 Similar plastic shear criterion as in sand production for [ + Data
. . L1 - - Fit
depletion-induced breakouts 1 - - FitMC
T 1 - Str path UC
. . . s 8 ——Str path TC2
* Elasto-plastic modified Mohr-Coulomb with pressure cap: = s
* Numerical solutions, hardening/softening and destructuration, 4”,/:\
pore collapse ,;,1‘3'/ ‘.
* Kozeny-Carman permeability with added parameter for pore o o a2 3
p [MPa]

collapse
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Differential pressure [bar]

3 o -
Injected acid [mi]

10 ml/min ' 25 ml/min ; 25 ml/min
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Effect of acid on solids production

* HC solids production tests

 Wormholes crushed only
near wellbore

 More pronounced strength
reduction for DD tests

29

Sample ] Borehole failure | Solids production
onset onset

Depletion, 17.0 MPa 34.4 MPa

virgin

(reference)

Depletion, 14.5 MPa 21.8 MPa

acidized

Drawdown, 14 MPa 22.3 MPa

virgin

(reference)

Drawdown, 7.5 MPa 8.5 MPa

acidized

Drawdown, 5.9 MPa 6.3 MPa

acidized
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Creep

* Time dependent strain at constant stress related to solid skeleton

 Visco-elastic/plastic deformation process

* Governed by propagation of p-fractures

I | sy s |

Strain

Time

Time

Fjaer E. et al., Petroleum Related Rock Mechanics, 2" ed., 2008.
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ISM

Shale creep as healing mechan
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B Pores/cracks Steel pipe Intact shale

Nature's own solution

Cylindrical shale sample

creeping towards pipe GOOd
— barrier!
| = .
g - §

Poor
barrier!

Outcrop shale

E. Fjeer et al. (2016), How creeping shale may form a sealing SINTEF
barrier around a well, Am. Rock Mech. Assoc., ARMA 16-482. B NTNU
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