

HOLLOW CYLINDER TESTING AT SINTEF

Pierre Cerasi

Outline

- The origins
- Sand production
- Shale hole stability
- Chalk liquefaction
- Shale creep

The origins of hollow cylinder testing

- Formation Physics laboratory established in 1983
- Established to help with borehole stability and solids production problems
 - Through laboratory experiment based predictive model building
- Early tests looked at cavity
 - Later simplified to hollow cylinder

Hollow cylinder test system

- SBEL large sample cell (108 MPa)
- Sample size of 2", 4" or 8" diameter
- Sand detection system can be added
- Internal and external deformation measurement devices
- High-capacity fluid flow system (4 l/min at 40 MPa)
- Radial and/or axial flooding of samples

SBEL

🕥 SINTEF

HC deformation: steps to failure

- First step: elastic deformation
 - Limited deformation regime
 - At some point, microcracks develop (end of linear elastic deformation)
- Growth of a plastic zone from the borehole outwards
 - Relieves stresses at borehole face
 - Screens far-field anisotropic stresses
- Buckling at the borehole surface
 - Bifurcation from isotropic radial deformation to buckling
 - Initiates cracking around the borehole
- Development of shear bands and tensile cracks
 - Rock rupture occurs as development of shear bands and exfoliation
 - Surface parallel cracking and shear banding are dominant failure modes

Standard sand production test on HC plug

- From field core
- Outcrop

HC test procedure and typical output

- Confining stress increased in steps
- For each step, fluid flow rate increased in steps
- If no sand, flow rate increased
- If sand, wait until no more sand produced

1D erosion model

- Coupled poro-elastoplastic rock description and erosion model:
- $\int_{V} \sigma_{ij} \tilde{\varepsilon}_{ij} dV = \int_{\partial V_{\sigma}} t_i \tilde{u}_i dS$ Equilibrium: $q_i = -\frac{k}{\mu} p_{,i}$; $k = k_0 \frac{\phi^3}{(1-\phi)^2}$ Darcy & Kozeny-Carman: $\frac{\partial \phi}{\partial t} - \lambda (1 - \phi) \sqrt{q_i q_i} = 0$ Combined solids continuity & mass production: $\lambda(\gamma^{p}) = \begin{cases} 0 & \text{if } \gamma^{p} \leq \gamma_{peak}^{p} \\ \lambda_{1}(\gamma^{p} - \gamma_{peak}^{p}) & \text{if } \gamma_{peak}^{p} \leq \gamma^{p} \leq \gamma_{peak}^{p} + \lambda_{2}/\lambda_{1} \\ \lambda_{2} & \text{if } \gamma_{peak}^{p} + \lambda_{2}/\lambda_{1} \leq \gamma^{p} \end{cases}$ Sand production coef. λ function of plastic shear strain γ^{p} :

8

SINTEF

1D Analytical sand model version

- Simplifying assumption: the rock framework is unaffected by erosion until the porosity has reached a critical value ϕ_c then it collapses.
 - Repeated cycles of erosion & collapse.
- Porosity within sand producing zone:

$$\phi = 1 - (1 - \phi_o) e^{-\lambda_s (q_{fl} - q_{fl}^c)(t - t_o)}$$

 Average sand production rate = sand volume within sand producing zone divided by time between each collapse:

$$\dot{M}_{s} = \mu R P_{s} \frac{D - D_{c}}{C_{0}} (Q - S_{c} q_{0})$$
 with $P_{s} = 4\lambda \frac{1 - \phi_{0}}{\phi_{c}^{4} - \phi_{0}^{4}}, S_{c} = 2\pi L R$

- At constant drawdown above the critical limit, the average sand production rate may increase slowly with time.
- Eventually, or alternatively, the sand production may stop after a while.

🕥 SINTEF

9

2D Friction dominated flow model

- Link between rock failure and sand transport
- Analytical model based on friction-collision transition
- Assumes initial required state: plastic zone with shear bands
- Sand flow arises in shear bands
- Fully mobilised friction between grains needed
- Flow occurs in post-peak rock environment
 - (residual strength, cohesion, friction angle, ...)

Bounds on sand production estimate

- Lower bound:
 - only single shear bands active
- Higher bound:
 - complete collapse of plastic zone
 - due to wholescale fluidisation
 - due to interaction between all SB, enclosing breakouts
- Probable actual state:
 - anywhere between LB and HB, depending on rock type and failure

- Cylindrical tunnel
 restricted to
 - centre of plug
- Rectangular slit
 spanning whole plug height

SINTEF

Coupling particle flow to porosity change

• Rate of production coupled to changing porosity:

$$\dot{M}_{s} = Q_{p} \rho_{s} \left(1 - \phi\right) \qquad \qquad \phi_{t+1} = 1 - \frac{\left(\rho_{s} Vol_{slit} \left(1 - \phi_{t}\right) - dM_{st}\right)}{\rho_{s} Vol_{slit}}$$

• Permeability calculation:

$$k_{SB} = \frac{a^2}{180} \cdot \frac{\phi_t^3}{\left(1 - \phi_t\right)^2}$$

$$k_{t} = \frac{R_{o} - R_{i}}{\frac{R_{c} - R_{i}}{k_{SB}} + \frac{R_{o} - R_{c}}{k}}$$

12

Sand grains or flakes?

- High porosity, low strength sandstones tend to produce individual sand grains
 - A sieve analysis of the crushed sample gives a good estimation of what to expect
- Lower porosity, higher strength sandstones tend to produce flakes, especially if there is a substantial amount of clay cementation
 - But on arrival of water breakthrough, there may be a transition to individual grain production

Sand grains

14

Flakes

🕥 SINTEF

15

Effect of 2-phase saturation

- Comparison of 1-phase and 2-phase saturation
 - Water breakthrough effect on sand rate

SandPredictor

SandPredictor

SINTEF

.....

SINTEF

Formation anisotropy

- By default, cores are taken axially along the well path
 - Some formations are markedly anisotropic
 - Both in permeability and strength
 - One then needs to take out plugs in the relevant direction
 - This is often impossible if the core diameter is small
 - If possible, repeat testing should be performed at different plug axis angle to formation bedding, to cater for other well orientations
 - Bedding angle may affect borehole failure mode (shear, tensile) and caving/breakout size and shape (more relevant for cap rock then most sandstones)

() SINTEF

Dynamic borehole stability

- Simulation of swab and surge effects
 - Rotation of drillstring with stabilizer
 - Scaling down from field to laboratory:

Pressure

vesse

Vertical

position

Cantilever

Sample

🖫 Motor

for

vertical

SINTEF

positioning

Base plug

motor

Additional fracturing of borehole wall

- Effect of drillstring RPM on shale fracturing studied
 - Increased RPM leads to longer radial extension of fractures

PSI software

- Calculates mud weight window
 - Based on log input
 - Takes into account timedependent effects
 - Weak planes
 - Different failure models
 - Simple plasticity

Chalk liquefaction: triaxial tests

Axial stress [MPa]

- Water weakening in some chalks
- Pore collapse behaviour
- Used to calibrate elastoplastic model(s)

Chalk liquefaction: HC tests

 Drawdown & depletion HC tests with oil & brine saturation

Chalk liquefaction vs. breakouts

Liquefaction failure in brine DD test

Breakout failure with radial cracks in brine depletion test

Chalk model (E. Papamichos)

• Tensile criterion for DD-induced liquefaction :

$$p_e - p_i \le UCS \frac{1}{\alpha} \ln \frac{r_e}{r_i} - \frac{\sigma_{ri} + ap_i}{1 - r_i^M / r_b^M} \frac{M}{\alpha} \ln \frac{r_e}{r_i} \qquad M = \frac{2\sin\varphi}{1 - \sin\varphi}$$

- Elasto-plastic modified Mohr-Coulomb with pressure cap:
 - Numerical solutions, hardening/softening and destructuration, pore collapse
 - Kozeny-Carman permeability with added parameter for pore collapse

Acidizing in chalk

Effect of acid on solids production

- HC solids production tests
- Wormholes crushed only near wellbore
- More pronounced strength reduction for DD tests

Sample	Borehole failure onset	Solids production onset
Depletion, virgin (reference)	17.0 MPa	34.4 MPa
Depletion, acidized	14.5 MPa	21.8 MPa
Drawdown, virgin (reference)	14 MPa	22.3 MPa
Drawdown, acidized	7.5 MPa	8.5 MPa
Drawdown, acidized	5.9 MPa	6.3 MPa

Creep

• Time dependent strain at constant stress related to solid skeleton

- Visco-elastic/plastic deformation process
- Governed by propagation of $\mu\text{-}\text{fractures}$

30

SINTEF

Shale creep as healing mechanism

- Interesting for P&A
- µannulus healing in WI for CCS

E. Fjær et al. (2016), How creeping shale may form a sealing barrier around a well, *Am. Rock Mech. Assoc.*, **ARMA 16-482**.

Technology for a better society