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The origins of hollow cylinder testing

• Formation Physics laboratory established in 1983

• Established to help with borehole stability and solids 
production problems
• Through laboratory experiment based predictive model building

• Early tests looked at cavity
• Later simplified to hollow cylinder
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Hollow cylinder test system
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• SBEL large sample cell (108 MPa) 
• Sample size of 2’’, 4’’ or 8’’ diameter
• Sand detection system can be added 
• Internal and external deformation measurement 

devices 
• High-capacity fluid flow system (4 l/min at 40 MPa) 
• Radial and/or axial flooding of samples 

SBEL
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HC deformation: steps to failure

• First step: elastic deformation
• Limited deformation regime

• At some point, microcracks develop (end of linear elastic deformation)

• Growth of a plastic zone from the borehole outwards
• Relieves stresses at borehole face

• Screens far-field anisotropic stresses

• Buckling at the borehole surface
• Bifurcation from isotropic radial deformation to buckling

• Initiates cracking around the borehole

• Development of shear bands and tensile cracks
• Rock rupture occurs as development of shear bands and exfoliation

• Surface parallel cracking and shear banding are dominant failure 
modes

[Vardoulakis, Sulem & Guenot, 1988]
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Standard sand production test on HC plug

Fluid inlet

Sand trap

Sand trap

 From field core
 Outcrop
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HC test procedure and typical output

• Confining stress increased in steps

• For each step, fluid flow rate increased in steps

• If no sand, flow rate increased

• If sand, wait until no more sand produced

Fluid flow rate

Stress
Flow rate External

radial stress

Time
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1D erosion model
• Coupled poro-elastoplastic rock description and erosion model:

( )

3

, 0 2  ;       
1i i

kq p k k φ
µ φ

= − =
−

ij ij i i
V V

dV t u dS
σ

σ ε
∂

=∫ ∫ 

( )1 0i iq q
t
φ λ φ∂
− − =

∂

( ) ( )1 2 1

2 2 1

0                      if 

 if 

                    if 

p p
peak

p p p p p p
peak peak peak

p p
peak

γ γ

λ γ λ γ γ γ γ γ λ λ

λ γ λ λ γ

 ≤
= − ≤ ≤ +


+ ≤

 Equilibrium:

 Darcy & Kozeny-Carman:

 Combined solids continuity 
& mass production:

 Sand production coef. λ
function of plastic shear 
strain γp:



9

1D Analytical sand model version

• Simplifying assumption: the rock framework is unaffected by erosion until the porosity has 
reached a critical value φc - then it collapses.
• Repeated cycles of erosion & collapse.

• Porosity within sand producing zone:

• Average sand production rate = sand volume within sand producing zone divided by time 
between each collapse:

• At constant drawdown above the critical limit, the average sand production rate may increase 
slowly with time.

• Eventually, or alternatively, the sand production may stop after a while.
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2D Friction dominated flow model

• Link between rock failure and sand transport

• Analytical model based on friction-collision transition

• Assumes initial required state: plastic zone with shear bands

• Sand flow arises in shear bands

• Fully mobilised friction between grains needed

• Flow occurs in post-peak rock environment
• (residual strength, cohesion, friction angle, …)
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Bounds on sand production estimate

• Lower bound:
• only single shear bands active

• Higher bound:
• complete collapse of plastic zone
• due to wholescale fluidisation
• due to interaction between all SB, enclosing breakouts

• Probable actual state:
• anywhere between LB and HB, depending on rock 

type and failure

 Cylindrical tunnel
 restricted to 

centre of plug

 Rectangular slit
 spanning whole 

plug height
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Coupling particle flow to porosity change

• Rate of production coupled to changing porosity:

• Permeability calculation:
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Sand grains or flakes?
• High porosity, low strength sandstones tend to produce individual sand 

grains
• A sieve analysis of the crushed sample gives a good estimation of what to expect

• Lower porosity, higher strength sandstones tend to produce flakes, 
especially if there is a substantial amount of clay cementation
• But on arrival of water breakthrough, there may be a transition to individual grain production
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Sand grains
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Flakes
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Effect of 2-phase saturation

• Comparison of 1-phase and 2-phase saturation
• Water breakthrough effect on sand rate
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SandPredictor
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SandPredictor
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Borehole stability in shales

• Straining of borehole wall of shale:
• Osmosis

• Ion exchange

• Thermal effects
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Formation anisotropy
• By default, cores are taken axially along the well path
• Some formations are markedly anisotropic
• Both in permeability and strength

• One then needs to take out plugs in the relevant direction

• This is often impossible if the core diameter is small

• If possible, repeat testing should be performed at different plug axis angle to formation bedding, to cater for other well 
orientations

• Bedding angle may affect borehole failure mode (shear, tensile) and caving/breakout size and shape (more relevant for cap 
rock then most sandstones)
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Dynamic borehole stability
• Simulation of swab and surge effects
• Rotation of drillstring with stabilizer

• Scaling down from field to laboratory:
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Additional fracturing of borehole wall

• Effect of drillstring RPM on shale fracturing studied
• Increased RPM leads to longer radial extension of fractures
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PSI software

• Calculates mud
weight window
• Based on log input

• Takes into account time-
dependent effects

• Weak planes

• Different failure models

• Simple plasticity
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Chalk liquefaction: triaxial tests

• Water weakening in 
some chalks

• Pore collapse behaviour

• Used to calibrate elasto-
plastic model(s)
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Chalk liquefaction: HC tests

• Drawdown & depletion
HC tests with oil & brine
saturation
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Chalk liquefaction vs. breakouts
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Liquefaction failure in brine DD test Breakout failure with radial cracks in brine depletion test



Chalk model (E. Papamichos)

• Tensile criterion for DD-induced liquefaction :

• Similar plastic shear criterion as in sand production for 
depletion-induced breakouts

• Elasto-plastic modified Mohr-Coulomb with pressure cap:
• Numerical solutions, hardening/softening and destructuration, 

pore collapse
• Kozeny-Carman permeability with added parameter for pore 

collapse
27



Acidizing in chalk
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Effect of acid on solids production

• HC solids production tests

• Wormholes crushed only
near wellbore

• More pronounced strength
reduction for DD tests
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Creep

• Time dependent strain at constant stress related to solid skeleton
• Visco-elastic/plastic deformation process

• Governed by propagation of µ-fractures

30
Fjær E. et al., Petroleum Related Rock Mechanics, 2nd ed., 2008.



Shale creep as healing mechanism

• Interesting for P&A

• µannulus healing in WI for CCS
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Nature's own solution
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Cylindrical shale sample 
creeping towards pipe

Selected field 
shale

Outcrop shale

Pores/cracks Steel pipe Intact shale

Good 
barrier!

Poor 
barrier!

E. Fjær et al. (2016), How creeping shale may form a sealing 
barrier around a well, Am. Rock Mech. Assoc., ARMA 16-482.
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